본문 바로가기

Classical Mechanics/Experiments - Lynx

역학실험 2 - Chaos

1. 실험 목적  소개

고전 역학적 관점에서 나타나는 Chaos 현상을 간단히 구현하여 본다.

Chaos 현상의 해석을 위하여 Potential Well, Phase Diagram 활용한다.

 

2. 기본 이론

카오스란?

± 19세기  프랑스의 라플라스의 결정론적 세계관(Stephen T. Thornton, Jerry B. Marion, 2004)

± 우주의 모든 입자들의 위치와 속도를 알고 있으면 어떤 시간에 대해서도 미래를   있다고 주장

± 카오스(chaos, 혼돈) 불규칙하고 예측불가능하다는 점에서 동전을 던지는 것과 같은 무작위 현상과 같다고 오해

± 카오스 현상은 계가  상태에서 다음 상태로 발전할  물리법칙이라는 규칙이 존재

± 결정론적 카오스는 항상 3 이상의 변수로 이루어진 비선형계와 관련되어 있다(김영태, 1998)

± 비선형계는 운동방정식을 이루는 변수가 선형적이지 않은 , 완전해를 구할  없다

± 위상공간, 푸앵카레 단면과 같은 그래프의 모양 분석을 통해 물체의 운동을 분석
(Stephen T. Thornton, Jerry B. Marion, 2004)

 

Attractor (끌개)

± 초기 항의 효과가 사라진 긴시간 이후 위상공간에서의 점들의 집합

± 끌개(attractor) 모양에 따라 주기 운동과 카오스 운동이 구별

± 어느 특정 영역에서 주기운동으로 빠짐

± 초기 상태와 무관

 

비선형 진동자의 예시

Simple Harmonic Oscillator

±  mx+kx=0

±  Damped Oscillation : mx+bx+kx+cf(t)=0


⇔(md2dt2+bdydx+k)x(t)=-cf(t)

± C = 0  경우, (Homogeneous) 단순한 진동자 문제. 해의 선형성 보장

±  L(x1)+ L(x2)= L(x1+x2)

± F(t) Analytic 하지 않은 문제가 생길 경우에 Nonlinear

± 해를 구하기 어려움

± Homogeneous  경우 Periodic 보장 가능

± Nonhomogeneous 경우 non-periodic

± Analytic Solution 없음

± Shooting Method, Runge Kutta Method 등의 수치해로만 풀이 가능

 

Potential Well

± S.H.O

±  mx+kx=0

±    F=mx=-kx=-∂V∂x

± Damped Oscillator

±  mx+bx+kx = 0

±  →H=1/2mx2+1/2kx2+∫bx^2dt

 
(Nonfriction 
 경우 b=0
Friction 
 관한 Solution x=exp(-Bt)sinωt

± 마찰이 작용하는 경우, 진폭이 계속 감소하는 운동

±    U=1/2kx^2-1/2mω^2A02exp(-Bt)

 

Phase Space

± Chaos 현상 연구를 위해 Hamiltonian 필수

± Hamiltonian 본질적으로 운동량과 위치의 함수

± 위치와 운동량으로 이루어진 공간이 Phase Space

± Harmonic Oscillator        

± Underdamped Oscillator

± Critically damped Oscillator

± Underdamped Oscillator

 

 

Poincare Section

± 위상공간 속에서 이들의 평행면으로  위상 궤도의 구역에 찍은 점의 궤적

± 위상공간 도표를 순간카메라로 찍은 것과 유사함

±  x=θ,z=ωt',y=θ

± SHO 경우 투사된 모든 점은 같다.

±  Z 

까지 가면 다시 (x.y) 돌아오니까

3. 실험 결과

실험 준비

± 알루미늄 원판에  개의 스프링이 연결된 구조

± 원판에 달린 점질량이 Nonlinear함을 만들어냄

± Sinusoidal  driving force

± Predictable Motion에서 Chaotic Motion으로 전환

실험 장비

Driver Photogate             Tying the String             Complete      Magnetic Drag

 

실험1) Chaotic Motion

 

Figure 1: < Phase Diagram >

 Potential Well    관찰되는 

Poincare point(굵은 )  여러 곳에 찍힌다.

 

 

 

 

 

 

 

 

 

Figure 2: < Potential Well>

 Potential Well    나타남을 관찰할  있었다.

갑자기 크게 에너지가 변한 곳은 손가락으로  쳐서 비선형적인 효과를 극대화 하려고    부분이다.

 

 

 

 

 

 

 

2) Non – Chaotic Motion

 

Figure 3: Phase Space of Non chaotic motion

 Non Chaotic Motion에서의 Phase space 그려 보았다. Chaotic  때와 달리 하나의 닫힌 곡선(타원에 가까운)  그리고 있었다.

 

주기적인 운동이기 때문에 Poincare point (밝은 ) 계속 같은 위치에 찍혔다.

 

Magnetic drag 거의 주지 않음

 

 

 

 

 

 

 

Figure 4: Potential Well of Non Chaotic motion

Non Chaotic Motion에서의 Potential Well.

S.H.O에서처럼 이차함수 모양을 그리고 있다.

 

 

 

 

 

 

 

Figure 5: Damping

 

 

 

Damping  효과로 Potential Well     점점 채워지고 있다.

 

 

 

 

 

 

 

 

4. 결론  관찰 결과

 개의 Potential well( 개의 용수철이 갖고 있는 탄성 에너지에 의한)  넘나드는 모습을 관찰하였으나, 나중에는 한쪽 Potential Well에만 빠지는 모습을   있었다.

이를 통해서 우리 실험에서는 배경 이론에서 언급한 Attractor 모양이 원형으로 나타나고 있다는 결론을 내렸다.

또한, Attractor  모양은 초기 조건과 무관하게 나타나는 것도 관찰할  있었다. 한쪽 퍼텐셜에 빠진 것을 보고 손가락으로 점질량을 건드려서 반대편 Potential Well 빠지게도  보았으나 이내 다시 나와서 다른 Potential Well 빠지는 것을  것이다. (이후 Poincare point  거의 한쪽에만 찍힘)

왼쪽에 Phase 곡선이 타원형으로 점점 굵게 나타나고 있음을   있다.

 

Reference

± Classical Dynamics of Particles and systems 5th edition (Stephen T.Thornton, Jerry B.Marion)

± Fowels,Cassiday Analytical Mechanics

± https://web.archive.org/web/20051227123602/http://physics.mercer.edu/pendulum/

± https://en.wikipedia.org/wiki/Harmonic_oscillator

± 카오스 진자의 비주기적 운동 분석과 커플 진동에서 표준 진동수와 진자의 관성모멘트 비의 영향 연구
(Analysis of Non-periodic Motion for the Chaos Pendulum & the Effect of Normal Frequency and Ratio of Moment of Inertia for the Coupled motion, 
서울대학교 과학교육과 박수정)
https://s-space.snu.ac.kr/bitstream/10371/128095/1/000000141390.pdf

± Intermediate Dynamics (Patric Hamill, 강지훈, 송승기, 양우철, 이영재 )

± https://www.slowpokeproductions.com/

± https://gfycat.com/animatedeverlastingbagworm-engineering-mathematica-simulation

± https://gifer.com/en/3j8h

± http://phylab.yonsei.ac.kr/board.php?board=sensor&command=body&no=6